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ABSTRACT: Full Waveform LiDAR data have been available for many years, yet applications just 

recently started discovering its potential in airborne topographic surveying. Forestry and earth 

sciences applications have been traditionally using waveform processing for many years, but 

topographic mapping has just started exploring the benefits of waveform. The potential advantages 

are improved point cloud generation, better object surface characterization, and support for object 

classification. However, there are several implementations and performance issues, such as the 

availability of waveform processing tools and waveform compression methods that should be 

addressed before applications can take full advantage of the availability of waveform data. The paper 

provides an overview of the waveform application potential in both airborne and mobile LiDAR 

mapping applications. 

 

1. INTRODUCTION 

 

The availability and use of Full Waveform Digitization (FWD) have been steadily growing 

in airborne LiDAR applications (Shan and Toth, 2009). These developments are mainly 

driven by two factors. First, technological advancements have improved system 

performance to the point that data storage is hardly a consideration, and, consequently, 

waveform data is easily available. In addition, sensor electronics developments provide 

better digitization capabilities in terms of improved signal quantization, shorter sampling 

rate, and longer sample records. Second, from a theoretical perspective, the full LiDAR 

waveform contains more information than discrete returns, which typically represent a 

subset of the waveform signal. Thus, as applications are searching for additional 

information sources to improve the value of any LiDAR-derived product, waveform is  

an obvious choice. Following general trends that software developments are behind the 

hardware, the availability of waveform processing software at the moment is basically 

limited to viewing capabilities; though research is active in this field and there are already  

a few processing methods to mainly address the needs of forestry applications.  

The main benefits of waveform data are that it can provide better description of the object 

space geometry, primarily the vertical structure, and can support classification, such as 
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land-cover mapping. This study reviews the basics of the LiDAR waveform technology and 

compares its capabilities with respect to airborne and mobile platforms. 

 

2. FULL WAVEFORM DIGITIZATION 

 

Mobile LiDAR mapping systems, both airborne and Mobile LiDAR, are based on 

combining highly accurate georeferencing technologies with powerful pulsed laser sensing. 

Since the laser pulse is generated from a single device, laser rangefinder, a mechanical 

scanning mechanism is required to create a scanning laser beam. Note, that in general, the 

platform motion provides the second scanning direction, so that an area under an airplane 

can be more or less evenly ranged, or a 360° FOV rotating scanner on the vehicle can map 

the whole corridor around the vehicle path. Ignoring these aspects, there is very little 

functional difference between the systems designed for the two platforms; in fact, some 

systems, such as the RIEGL LMS-Q240i, are widely used on both airborne and mobile 

vehicle platforms.  

The detection of the backscattered return signal, the waveform, has been an essential 

component of LiDAR systems, as it forms the basis for the range measurement. Note, the 

waveform is as old as the LiDAR technology itself. However, the lack of adequate sensor 

electronics and computer hardware made the access to digitized waveform practically 

impossible or unaffordable for a long time. Early systems used a simple threshold only to 

detect the arrival of the return pulse. Significant technological developments were needed 

to provide the whole waveform, which is frequently called Full Waveform Digitization. 

Figure 1 shows the process of waveform digitization. 

 
Fig. 1. Waveform digitization (Courtesy of Leica) 

 

The effective length of the waveform depends a lot on the objects the reflection happens 

from, and systems have different solutions to make sure that only the significant part of the 

waveform is recorded. Obviously, a single return requires shorter sample length than  

a waveform generated by multiple returns from a tall tree. The two major solutions are the 

fixed length, where after detecting the presence of the waveform a certain number of 

samples are recorded, or variable length, where multiple sections of the waveform are 

recorded. In the latter case, when the waveform signal falls under the noise threshold, the 

digitization stops, and only resumes if the waveform signal is detected again (signal goes 

above the noise threshold). The typical sampling distance on modern systems is 1 ns, which 

translates to 15 cm distance (the measured range is half of the traveled distance by the laser 

pulse). The record length, the number of samples, generally falls in the range of 64-512. 
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Most systems offer a few options in terms of various record length and sampling rates to 

accommodate for different application requirements. Typical parameters including 

waveform digitizer capabilities are listed in Table 1 for broadly used systems. 

 
Tab. 1. State-of-the-art airborne and mobile LiDAR systems 

 

Airborne 

System 
Mode 

Scan 

Freq. 

[Hz] 

Pulse 

Freq. 

[kHz] 

Scanning 

Angle 

[°°°°] 

Beam 

Diverg. 

[mrad] 

Pulse 

Energy 

[ µJ] 

Range 

Resolution 

[cm] 

Pulse 

Length 

[ns] 

Digitizer 

[ns] 

Optech 

2033 
Oscillating 0-70 33 ±20 0.2/1.0 N/A 1.0 8.0 N/A 

Optech 

3100 
Oscillating 0-70 33-100 ±25 0.3/0.8 <200 1.0 8.0 1 

Optech 

Gemini 
Oscillating 0-70 167 ±25 0.15/0.25/0.8 <200 3.0 7.0 1 

Optech 

Orion 
Oscillating 0-100 167 ±25 0.25 <200 2.0 7.0 N/A 

Pegasus Oscillating 0-140 400 ±32.5 0.2 N/A 2.0 N/A 1 

TopEye 

MkII 
Conic 35 5-50 14,20 1.0 N/A <1.0 4.0 0.5 

TopoSys I Line 653 83 ±7.15 1.0 N/A 6.0 5.0 N/A 

TopoSys II 

Falcon 
Line 653 83 ±7.15 1.0 N/A 2.0 5.0 1 

Trimble 

Harrier 

Rotating 

polygon 
160 160 ±30 0.5 N/A 2.0 4.0 1 

Leica 

ALS50 
Oscillating 25-70 83 ±37.5 0.33 N/A N/A 10 N/A 

Leica 

ALS50-II 
Oscillating 35-90 150 ±37.5 0.22 N/A N/A 10 1 

Leica 

ALS60 
Oscillating 0-100 200 ±37.5 0.22 N/A 3.0-4.0 5.0 1 

Riegl 

LMS-Q560 
Line 160 240 ±30.0 0.3 8 2.0 4.0 1 

Riegl 

LMS-Q680i 
Line 200 266 ±30.0 0.5 8 2.0 4.0 1 

 

Mobile  

LiDAR 

Laser 

Units 

Scan 

Freq. 

[Hz] 

Pulse 

Freq. 

[kHz] 

Scanning 

Angle 

[°°°°] 

Beam  

Diverg. 

[mrad] 

Pulse 

Energy 

[ µJ] 

Range 

Resolution 

[cm] 

Pulse 

Length 

[ns] 

Digitizer 

[ns] 

Optech 

Lynx 
2 200 500 360 N/A N/A 0.8 N/A N/A 

Riegl  

LMS-VQ250 
2 200 600 360 0.3 N/A 0.5 N/A N/A 
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3. FULL WAVEFORM PROCESSING 

 

Since digitizing and storing waveforms are widely available by now, basic data acquisition 

technologies, the processing of waveforms is a user’s choice; either to accept the real-time 

discrete return extraction offered by most manufacturers, or do the return extraction and 

additional waveform analysis in post-processing mode. Note that Riegl has many systems 

that only record the waveforms and no return extraction is done onboard; the discrete return 

extraction is only done in post-processing. There is no clear answer to which approach is 

better, as depending on the application specifics, both solutions, and even their 

combination, could be optimal. Table 2 list advantages and disadvantages of the two basic 

techniques. Note that the unnecessary separation of discrete return processing in real-time 

(online waveform processing) and return extraction in post-processing is more like  

an industry concept for marketing purposes. 

Tab. 2. Discrete return vs. full waveform digitization 

 

 
Discrete Return Full Waveform Digitization 

A
d

v
a

n
ta

g
es

 

More manageable data volume 

Faster processing than FWD 

Many tools are available to process the 

data 

Can provide much more detailed information 

about vertical elevation structure, surface 

slope and roughness 

Ability to distinguish an ‘unlimited’ number of 

targets in each waveform 

More flexibility and control in data processing 

and interpretation 

Possibility to define the way of calculating the 

range in post-processing potentially makes the 

ranging process more robust and accurate 

D
is

a
d

v
a

n
ta

g
es

 

Coarse vertical resolution, discrete returns 

have to be separated by a few meters 

vertically (though, it is changing with 

shorter pulse length) 

Targets/objects separated by less than a 

meter vertically cannot be resolved by a 

discrete return system 

Pulse detection method applied depends on 

system manufacturer, user has no choice, 

while the method chosen can significantly 

affect accuracy 

Data volume increases by a factor of 50-200 

compared to discrete return systems 

Processing takes more time 

Not many tools are available to process full 

waveform data 

4. RETURN/PULSE EXTRACTION METHODS 

 

The techniques used to extract returns from waveforms have evolved over time as 

technology provided both better digitization and more computer power to process 

waveforms in either real-time or post-processing. Earlier techniques of detecting the arrival 

of the return pulse were based on using a simple threshold technique. Later, short-time 
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storage (buffering) of the return signal became available, and thus, provided a base for 

more complex methods for peak detection. For example, the center (gravity) of the return 

pulse shape or the Constant Fraction Discrimination (CFD) of the signal could be 

computed, and thus, better estimates became available. In addition, the detection of 

multiple peaks became feasible. Furthermore, various combinations of both hardware and 

software solutions resulted in techniques that are widely used in state-of-the-art LiDAR 

systems nowadays. Obviously, less, if anything, is known about the onboard methods, as 

manufacturers provide no information about their solutions for competitive reasons.  

Figure 2 shows two waveforms with peaks determined during the data acquisition 

(onboard), marked with x in magenta, clearly indicating that the peak extraction could not 

reach an optimal solution in these two cases. Figure 2a shows a waveform with two clearly 

visible peaks correctly detected, but there is an undetected third peak. Figure 2b depicts  

a situation where there are two peaks, and potentially a third and fourth one, which were 

jointly detected as a single peak. Note that these types of waveforms and peak extraction 

results are, in general, not typical. 

Using simple widely available techniques, moving window with interval threshold and 

zero-crossing (first derivative), better return extraction can be achieved. The interval-based 

method (Billauer, 2008) correctly detects two peaks, marked in green, in both waveforms, 

but fails to extract the third peaks. The zero-crossing technique provides the best 

performance, as all the peaks, marked in red, are correctly detected in both waveforms. As 

an extension of the zero-crossing algorithm, the method described by  

(National Instruments, 2009) is based on the wavelet decomposition of the return signal and 

the detection of the zero crossings in the high level detail signal. 

 
 

Fig. 2. Discrete returns extracted; x (magenta): onboard, circle (green) interval method, and + (red): 

zero-crossing technique 
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Another group of techniques is based on decomposing the waveform into the sum of 

components, or echoes (pulses/peaks), to generate a denser and more accurate 3D point 

cloud (Mallet and Bretar, 2009) by modeling the waveforms with Gaussian (Wagner et al., 

2006), Generalized Gaussian or Lognormal functions (Chauve et al., 2007). Furthermore, 

the waveform decomposition into Gaussian components can be used not only for peak 

detection but can also discriminate between vegetation and non-vegetation points using the 

parameters of the Gaussian functions (Ducic et al., 2006), such as the amplitude and the 

standard deviation (pulse width). A similar approach (Mallet et al., 2008) used the 

Generalized Gaussian model for classifying urban areas with one more parameter, the shape 

parameter of the Generalized Gaussian model, which allows simulating Gaussian, flattened 

or peaked pulses, too. The Generalized Gaussian function is described in Eq. 1. 
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where, α=√2 is the Gaussian function, α=1  is the Laplacian function, and α>√2 represents  

a flattened Gaussian shape, µ and σ^2 stand for mean and variance, respectively. 

The shape-based decomposition clearly provides a good performance for detecting multiple 

overlapping peaks. In addition, it offers valuable information (shape feature parameters) for 

classification. The high performance, however, comes at a price, as the method is iterative 

and takes a significant amount of computations; therefore, it is only available in post-

processing. Note that good initial approximations, such as using onboard extracted peaks, 

can substantially reduce the processing time. Figure 3 illustrates two samples of waveform 

decomposition, including the residual functions. Figure 3a clearly indicates the high peak 

extraction capability of this method, as three highly-overlapping peaks are correctly 

detected. Figure 3b shows a more typical waveform, acquired over forested areas, with  

a large number of overlapping peaks. 

 

 

Fig. 3. Waveform decomposition-based peak extraction 
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To compare onboard discrete return extraction with methods available in post-processing,  

a comparative analysis based on a scan line, containing 1022 waveforms, extracted from  

a data set, acquired by an Optech 3100 Full-Waveform system, was performed. The 

selected area represented a mostly vegetated and suburban landscape in a region East of 

Dayton, Ohio. The waveforms were acquired at 70 kHz pulse rate, at 1 ns sampling with  

a maximum length of 440 samples (about 66 m in range) at an 8-bit intensity resolution 

(Optech, 2005). Table 3 and Figure 4 show the peak detection results as well as the 

computation time for the five tested methods. 

Tab. 3. Peak detection performance results based on 1022 waveforms 

Returns: 1 2 3 4 5 6 7 8 9 

Executio

n [s] 

 

Onboard 619 169 151 83 0 0 0 0 0 N/A 

Threshold 645 185 150 33 9 0 0 0 0 0.50 

Zerocrossin

g 627 179 133 55 25 2 0 1 0 

0.22 

Wavelet 624 187 114 54 32 10 0 0 1 5.20 

Spline 390 350 150 74 38 14 3 1 2 32.07 

Gaussian 306 306 167 141 72 23 6 0 1 1061.13 

 
 

Fig. 4. Peak detection performance results based on 1022 waveforms (visualization of Table 3.) 

 

The results in Table 3 confirm that, in general, more sophisticated methods can achieve 

higher peak detection performance. As expected, all five methods tested could extract more 

peaks in post-processing mode than the manufacturers provided real-time solution.  

In particular, the Gaussian function-based decomposition approach showed excellent 

performance for extracting highly-overlapping peaks, and thus detecting twice as many 
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peaks than the onboard solution in our tests. Since there was no absolute reference available 

for the waveforms, the results should be regarded as preliminary, although several 

randomly selected waveforms evaluated by an experienced operator indicated no 

misdetection. 

Figure 4 is just the visualization of Table 3 to better illustrate that more complex processing 

results in a wider distribution of the detected multiple peaks in general. 

 

Fig. 5. Classification results 

Tab. 4. Verification of the classification results 

 Grass Roof Tree Pavement 

Grass 21.6% 0.0% 0.4% 0.7% 

Roof 0.3% 25.6% 0.3% 0.1% 

Tree 8.8% 0.4% 4.2% 0.0% 

Pavement 1.9% 0.0% 2.2% 33.5% 
 

5. CLASSIFICATION POTENTIAL OF WAVEFORM 

ThBesides the benefit of better geometrical interpretation of the objects space, based on 

waveform data, the waveform may contain additional information that can be used to 

identify material or other characteristics of objects. An unsupervised classification method 

developed earlier (Laky et al., 2010a; Zaletnyik et al., 2010) was used to assess the land 

classification potential of the LiDAR waveform. This technique is based on statistical 

parameters of the echo waveforms, which provide the input to a Kohonen Self-Organizing 

Map (SOM) based neural network; the classifier output, in four classes, are combined with 

the discrete return data to obtain the final classification results. Figure 5 shows the results 

for 5934 waveforms acquired near Toronto, Canada, with reference image.   
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Visually comparing the results with an aerial imagery, the method, based on statistical 

parameters with unsupervised classification, classified the waveforms fairly effectively. For 

numerical validation, shown in Table 4, 700 sample points were manually classified using 

the aerial image. The rows are the classes of the manual classification, and the columns are 

the classes of the SOM-based classification. The percentages in the diagonal show the 

percentages of the waveforms that were correctly classified (84.9% of the waveforms). The 

most significant case of misclassification is 8.8% of the waveforms, which was manually 

classified as trees, but was classified as grass in the SOM-based approach. This possibly 

relates to seasonal changes. 

6. CONCLUSION 

The better exploitation of LiDAR waveform for topographic mapping was investigated in 

this study. The results, obtained by comparing pulses detected by discrete return systems 

during the data acquisition to various methods available in post-processing, indicated that 

the performance of the onboard return extraction can be improved. Obviously, this only 

applies to areas where more vertical resolution is needed to describe the objects, such as 

vegetated and urban areas; clearly, for open flat areas with hard surfaces, the geometrical 

description by discrete returns cannot be further improved. Most importantly, all post-

processing methods can deliver nearly unlimited returns. In particular, the shaped-based 

method can robustly handle highly-overlapped peaks, though they may create ghost returns 

and require significantly more computation time. 

The investigation on the feasibility of extracting information from waveform to support 

land cover classification produced encouraging results for a data set of about 6000 

waveforms acquired over a residential area. Compared to a visual evaluation of about 10% 

of the waveforms, an 85% classification performance was achieved. The unsupervised 

classification results were combined with discrete returns to obtain the final classification. 

Based on the finding of this limited experience, it is expected that a similar performance 

could be achieved for more complex scenes, provided the classifier is better trained and the 

shape parameterization of the extracted peaks is also included in the process.  

Comparing the waveform potential with respect to the two platforms, there are noticeable 

differences. First of all, the footprint is significantly different, and thus, on an average the 

complexity of waveforms obtained by Mobile LiDAR is below the airborne case; with 

respect to Mobile LiDAR, the airborne LiDAR appears as a large-footprint sensor. 

Therefore, it is likely that the classification potential of Mobile LiDAR is below that of the 

airborne case. Note, the shaped-based classification potential is much better for Mobile 

LiDAR, but that is based on the denser point cloud. Since the Mobile LiDAR has rather a 

small footprint, the surface orientation within the footprint is likely to be more homogenous 

than is the case for the airborne footprints. Therefore, the shape distortion due to incidence 

angles can be better preserved in the waveform, which could be only one pulse, and thus 

could be used for better object space reconstruction and interpretation. 
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